QUESTION 2016

GROUP – A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following $(I + \Delta)(I - \nabla)$ is equal to	owing;
	d) none of these) unequally spaced arguments) none of these
iii) The number of significant digits in 1.00234 is a) 3 b) 4 c) 5 ✓	d) 6
iv) First order forward difference of a constant function is ✓a) 0 b) 1 c) 3	d) 4
v) Newton-Raphson method can be used to solve the eq	f(x) = 0 when .
✓a) $f'(x) > 0$	f'(x) = 0 d) none of these
vi) Trapezoidal rule will not produce any error if $f(x)$ is	in discourage as
a) parabolic b) linear c)	logarithmic d) none of these
✓c) Gauss-Jacobi Method d)	Gauss-Jordon Method Crout's Method
viii) The error in Runge-Kutta method of 4 th order is	
a) $0(h^2)$ b) $0(h^3)$ c) $0(h^4)$	\checkmark d) $0(h^5)$
ix) If the nth order forward difference of a polynomial is 0	, then the degree of the polynomial will be
a) n	d) none of these
x) Regula-Falsi method is √a) conditionally convergent b)	linearly convergent

STATISTICS, NUMERICAL METHODS & ALGORITHMS

c) divergent

- d) none of these
- xi) Modified Euler's method has a truncation error of the order of
 - a) h
- c) h^3
- xii) The rate of convergence of secant method is
- b) 1
- c) 0.62
- √d) 1.62

Group - B

(Short Answer Type Questions)

2. Solve the following equations using Gauss-Seidel Method:

3x + y + 5z = 13; 5x - 2y + z = 4, x + 6y - 2z = -1 continue up to 3 successive approximation.

See Topic: ALGERAIC & TRANSCENDENTAL EQUATION, Short Answer Type Question No. 23.

3. Find f(5) using Newton's divide difference formula, for the following data:

X	· O	2	3	4 '	7	8
f(x)	4	26	58	112	466	668

See Topic: INTERPOLATION, Long Answer Type Question No. 10.

4. Find a negative root of the equation $x^3 - 3x - 5 = 0$ using Bisection method correct up to three decimal places.

See Topic: ALGERAIC & TRANSCENDENTAL EQUATION, Short Answer Type Question No. 24.

5. Evaluate $\int_{-\infty}^{3} \frac{x dx}{x^2 + 3}$ by Simpson's $\frac{1}{3}$ rule taking 7 ordinates and find the value of $\log_e \sqrt{3}$.

See Topic: NUMERICAL INTEGRATION, Long Answer Type Question No. 2.

6. Using Taylor's series method find y(0.2) correct up to three decimal places from

$$\frac{dy}{dx} = 2x + 3y^2 \text{ given } y(0) = 0 \text{ taking } h = 0.1.$$

See Topic: NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATION, Short Answer Type Question No. 13.

Group - C (Long Answer Type Questions)

interpolation formula * Lagrange's 7. a) Apply f(1) = 2, f(2) = 4, f(3) = 8, f(4) = 16 and f(7) = 128.

b) Solve the equation $x^3 - 3x - 5 = 0$ within (1, 2) by Bisection method correct to three decimal places.

c) Deduce Newton's Backward Interpolation formula.

a) See Topic: INTERPOLATION, Long Answer Type Question No. 17.a).

b) Question is wrongly stated.

c) See Topic: INTERPOLATION, Long Answer Type Question No. 17.b).

8. a) Solve by Euler's method the following differential equation $\frac{dy}{dx} = x^2 - y$, y(0) = 1, for

x = 0.3 taking h = 0.1, correct up to four decimal places.

- x = 0.3 taking n = 0.1, correct up to four documents and the equation $3x \cos x 1 = 0$.

 b) Using Regula-Falsi method to evaluate the smallest real root of the equation $3x \cos x 1 = 0$. correct to three decimal places.
- correct to three decimal places.

 a) See Topic: NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATION, Length
- Answer Type Question No. 14.a). b) See Topic: ALGERAIC & TRANSCENDENTAL EQUATION, Long Answer Type Question No. Lal
- 9. a) Solve the following system of equations by LU Factorization method.

$$2x-3y+4z=8$$

$$x+y+4z=15$$

$$3x+4y-z=8$$

- b) Obtain the order of convergence of Newton-Raphson method.
- c) Solve the following system of equations by Gauss-Jacobi iteration method correct up to 3 significant figures.

$$20x + 5y - 2z = 14$$
$$3x + 10y + z = 17$$
$$x - 4y + 10z = 23$$

- a) See Topic: ALGEBRAIC & TRANSCEDENTAL EQUATION, Long Answer Type Question No. 21.8).
- b) See Topic: ALGEBRAIC & TRANSCEDENTAL EQUATION, Long Answer Type Question No.
- c) See Topic: ALGEBRAIC & TRANSCEDENTAL EQUATION, Long Answer Type Question No. 21.c).
- 10. a) Use Runge-Kutta method of order 2 to calculate y(0.1) for the equation correct up to 4 decimal places.

$$\frac{dy}{dx} = x + y^2, y(0) = 1$$

- b) Given $\frac{dy}{dx} = x^2 + y^2$, y(1) = 2.3, calculate y(1.1) by modified Taylor Series method correct up
- to 4 decimal places.
- c) Find a real root of the equation x = 2x 3 correct up to 3 decimal places by iteration method.
- a) See Topic: NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATION, Long Answer Type Question No. 14.b).
- b) See Topic: NEMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATION, Long Answer Type question No. 5.
- e) See Topic: NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATION, Long Answer Type Question No. 1.b).

11. a) Solve the system of equation by Gauss elimination method:

$$x+3y+2z=5$$

$$2x - y + z = -1$$

$$x+2y+3z=2$$

b) The following table gives the distance in nautical miles of the visible horizon for the given heights infeet above the earth's surface:

Height (x)	100	150	200	250	300	350	400
Distance (y): A	10.66	13.06	15.07	16.84	18.45	19.93	21.3

Find the value of y when x = 120 ft and x = 390 ft.

1) See Topic: ALGEBRAIC & TRANSCEDENTAL EQUATION, Long Answer Type Question No. 16.b).

b) See Topic: INTERPOLATION, Long Answer Type Question No. 15.b).